

Pay with Amazon
Express Integration Guide

27 April 2015 2

Pay with Amazon
Express Integration Guide

Copyright © 2014-2015 Amazon.com, Inc. or its affiliates.

AMAZON, AMAZON PAYMENTS, and AMAZON.COM are registered trademarks of
Amazon.com, Inc. or its affiliates. All other trademarks are the property of their respective
owners.

27 April 2015 3

Contents
Introduction .. 4

Getting Started .. 5

Register with Amazon Payments .. 5

Button Generator Integration ... 7

Step 1. Use the Button Generator to Create Pay with Amazon Sandbox Buttons 7

Step 2. Test Your Pay with Amazon Buttons in Sandbox Mode.. 8

Step 3. Use the Button Generator to Create Pay with Amazon Production Buttons 9

Step 4. Test your Pay with Amazon Buttons in Production Mode .. 9

Custom Integration ... 10

Step 1. Add the Pay with Amazon JavaScript Reference .. 10

Step 2. Build and Create a Pay with Amazon Button .. 11

Step 3. Specify the Parameter Values ... 12

Step 4. Generate a Signature for the Payment Request ... 15

Step 5. Integrate Return URL Parameters ... 17

Step 6. Validate the Signature (optional) .. 20

Step 7. Retrieve the Shipping Address .. 21

Step 8. Test Your Integration in the Sandbox Environment Then Switch to Production 23

Appendix A - Set up an Amazon Payments Sandbox Test Account .. 23

27 April 2015 4

Introduction

Pay with Amazon provides millions of buyers a secure, trusted, and convenient way to pay for their
purchases on your site. To complete their purchase, buyers simply select a shipping address and
payment method stored in their Amazon Payments account.

Express Integration offers either a Button Generator Integration to provide simple copy-and-paste HTML
code you can use to add a Pay with Amazon button to your website, or a Custom Integration where you
can generate the Pay with Amazon button on your website and make API calls.

This table shows the differences between these features.

Button Generator

Integration

Custom Integration

Copy-and-paste integration for fixed
price items


Adjust the payment amount in a
button request (as in a shopping cart)


Use the Payment Management
Dashboard to manage the capture
and authorization of funds


Use APIs for authorization and
capture of funds

 

Retrieve the buyer's shipping address
before capturing the final payment



For more information see Button Generator Integration or Custom Integration.

27 April 2015 5

Getting Started

To use the Pay with Amazon button, you need to complete the following tasks:

1. Register with Amazon Payments.
If you've already registered for Amazon Payments you can proceed on to adding a button to
your website.

2. Add a Pay with Amazon button to your web page with Button Generator Integration or Custom
Integration.

3. Test your integration.
4. Collect and manage payments.

Register with Amazon Payments

You need an Amazon Payments account to generate a valid request. If you’re using the Button
Generator to perform an Express Integration, you can skip the steps marked Optional.

1. To register for Amazon Payments, go to https://payments.amazon.com/.

2. Create an application with Login with Amazon. Go to Seller Central to create the necessary
Client ID:

i. From the dropdown list near the top of the page, choose Login with Amazon.
ii. Click Register new application and enter information about your application, then

click Save.
iii. Click Web Settings.
iv. If you will be doing a custom integration, you need to note and save the Client ID.

v. Under Web Settings, click Edit and enter the Allowed JavaScript Origin and Allowed
Return URLs. Specifying these values is how you authorize interaction between your
web site and Amazon. (Web browsers normally block cross-origin communication
between scripts unless the script specifically allows it.)
An origin is the combination of protocol, domain name and port, for example,
https://www.example.com:8443. Allowed origins must use the HTTPS protocol. If
you are using a standard port (port 443) you need only include the domain name,
for example, https://www.example.com.
The return URL includes the protocol, domain, path, and query string(s), for

https://payments.amazon.com/
https://sellercentral.amazon.com/

27 April 2015 6

example, https://www.example.com/login.php.
For a detailed explanation of these options and on registering an application with
Login with Amazon, see Step 1: Register Your Application in the Login with Amazon
Getting Started for Web. (You can ignore the remaining steps in the Login with
Amazon Getting Started for Web guide.)

3. Optional: For integrations that do not use the Button Generator, you need to note and save
your Merchant ID. Your Merchant ID is used to sign your button or widget requests. To get your
Merchant ID:

i. In Seller Central, choose Amazon Payments Advanced from the dropdown list near
the top of the page.

ii. Click Settings and then click Integration Settings. The Merchant ID is used as the
sellerId parameter in the request.

4. Optional: For integrations that do not use the Button Generator, you need to create your own
signature to use to sign your requests. To create your own signature, you need to get your
Amazon Marketplace Web Service (Amazon MWS) Access Key ID and Secret Access Key. Get
your keys on the Amazon Payments console by first clicking Integration and then clicking MWS
Access Key.

http://login.amazon.com/website
http://login.amazon.com/website
https://sellercentral.amazon.com/

27 April 2015 7

Button Generator Integration

Button Generator Integration for Login and Pay with Amazon offers a Button Generator to provide
simple copy-and-paste HTML code you can use to add a full-featured Pay with Amazon button to your
website.

To use the Button Generator Integration, complete the following tasks:

1. Use the Button Generator to create Pay with Amazon Sandbox buttons.
2. Test your Pay with Amazon buttons in Sandbox mode.
3. Use the Button Generator to create Pay with Amazon Production buttons.
4. Test your Pay with Amazon buttons in Production mode.

Step 1. Use the Button Generator to Create Pay with Amazon Sandbox
Buttons

To test your integration and to ensure your buttons work correctly, Amazon Payments provides a
Sandbox environment for testing. When you test your Pay with Amazon buttons in Sandbox mode, you
can simulate the buyers’ experience, making as many purchases as needed without incurring any
charges.

You need to set up a test account in Sandbox. For instructions on how to do that see Appendix A - Set up
an Amazon Payments Sandbox Test Account.

To use the Button Generator to create test buttons:

1. Logon to Seller Central.
2. Use the Marketplace Switcher dropdown box and select the Amazon Payments Advanced

(Sandbox View).

The Marketplace Switcher appears as a dropdown box in the center of the menu located at the
top of the screen:

If your screen is minimized the Marketplace Switcher dropdown box is replaced with this icon:

Note: The buttons that you generate in Sandbox mode will be specific to the sandbox test
environment and can not be used in a production environment.

3. Go to the Express Integration Button Generator by clicking Integration Central under the
Integration tab.
The Button Generator is located in the Express Integration Button Generator section.

http://sellercentral.amazon.com/

27 April 2015 8

4. Click Create, enter the values you will be using, and then generate the HTML.

An advantage to using the Button Generator is that it automatically generates the signature for
your request. For parameter values that change, such as with a shopping cart, you would need
to regenerate the signature for each request. See Custom Integration for more information.

The following example shows code produced by the Button Generator.

<script async src="https://static-na.payments-
amazon.com/OffAmazonPayments/us/sandbox/js/Widgets.js"></script>
<div
 data-ap-widget-type="expressPaymentButton"
 data-ap-signature="gv5L4ElwMvMWUs1Q2huderKpOF6Fv4ulkL55Jh5B3YE%5D"
 data-ap-seller-id="SELLER_ID"
 data-ap-access-key="ACCESS_KEY"
 data-ap-lwa-client-id="amzn1.application-oa2-client.yourclientID"
 data-ap-return-url="https://www.example.com/order_complete.html"
 data-ap-currency-code="USD"
 data-ap-amount="30.00"
 data-ap-note="Thank you for your order"
 data-ap-shipping-address-required="true"
 data-ap-payment-action="AuthorizeAndCapture"
 >
</div>

The parameters in the sample above are described in the topic Step3. Specify the parameter
values under Custom Integration.

Step 2. Test Your Pay with Amazon Buttons in Sandbox Mode

To test your Sandbox buttons:

1. In Seller Central, verify you are still in the Sandbox View by making sure that the Amazon
Payments Advanced (Sandbox View) option is selected in the Marketplace Switcher dropdown
box.

2. Add the HTML code generated in step 1 to a web page.
3. Open your web page in a browser and click the Pay with Amazon button.
4. Sign on using your test email address and password you used when setting up your Sandbox

Test Account, review the information, and then click Pay now.
5. In Seller Central, remaining in the Sandbox View, open the Manage Payments under the Orders

tab.
6. Verify the order that you submitted is present and the order amount is correct.

27 April 2015 9

Step 3. Use the Button Generator to Create Pay with Amazon Production
Buttons

To generate production buttons:

1. Logon to Seller Central.
2. Use the Marketplace Switcher dropdown box and select the Amazon Payments Advanced

(Production View).
3. Select a test button you want to move to production.
4. Go to the Express Integration Button Generator by clicking Integration Central under the

Integration tab.
The Button Generator is located in the Express Integration Button Generator.

5. Enter the values you used from the test button, and then generate the HTML.

Step 4. Test your Pay with Amazon Buttons in Production Mode

Important! Orders submitted in a Production environment will be charged and you will be responsible
for any fees incurred even if you are testing! You may elect to test only one or two buttons to ensure
they are correct.

To test your Production buttons:

1. Add the HTML code generated in step 3 to your production web page.
2. In Seller Central, verify you are in the live production mode by making sure that the Amazon

Payments Advanced (Production View) option is selected in the Marketplace Switcher
dropdown box.

3. Open your production web page in a browser and click the Pay with Amazon button.
4. In Seller Central open the Manage Payments Dashboard and view the order that you submitted.
5. Verify that the order is correct.

27 April 2015 10

Custom Integration

With the Custom Integration you can add your own button code. The button code allows the payment
amount to be passed through a parameter and the transaction to be signed prior to making an API call.

To add a button to your web page and, complete the following tasks:

1. Add the Pay with Amazon JavaScript Reference.
2. Build and Create a Pay with Amazon Button.
3. Specify the Parameter Values.
4. Generate a Signature for the Payment Request.
5. Integrate Return URL Parameters.
6. Validate the Signature.
7. Retrieve the Shipping Address.
8. Test Your Integration in the Sandbox Environment Then Switch to Production.

Note: You can download code samples, and demos that show how to perform an Express Integration, in
various languages (C#, Java, PHP, Ruby) at https://github.com/amzn/pay-with-amazon-express-demo/.

Step 1. Add the Pay with Amazon JavaScript Reference

To render the Pay with Amazon button, add the following reference at the end of the <body> section
of your web page. Adding the snippet to the end of the <body> section helps ensure that the JavaScript
loads completely. The version of the snippet you use depends on whether you’re loading the web page
into your sandbox environment or the production environment.

Note: A sandbox environment is a testing environment where you can test and modify your code before
you push it to the live, production environment. As a best practice, you should always test your code
before you release it to production. For information about using the Login and Pay with Amazon
Payments Sandbox environment, go to Testing your integration with the Sandbox environment.

For instructions on how to set up a test account see Appendix A - Set up an Amazon Payments Sandbox
Test Account.

For your Sandbox integration, use this snippet:

<script async type='text/javascript'
 src='https://static-na.payments-
amazon.com/OffAmazonPayments/us/sandbox/js/Widgets.js’>
</script>

For your live Production integration, use this snippet:

<script async type='text/javascript'
 src='https://static-na.payments-amazon.com/OffAmazonPayments/us/js/Widgets.js’>
</script>

https://github.com/amzn/pay-with-amazon-express-demo/
http://docs.developer.amazonservices.com/en_US/apa_guide/APAGuide_Testing.html

27 April 2015 11

Step 2. Build and Create a Pay with Amazon Button

If the payment amount used for your button is variable, such as when customers use a shopping cart to
make purchases, then you need to use JavaScript to add the Pay with Amazon button with your web
site. This topic includes an example of what your code might look like.

When the amount changes on the checkout page and cannot be preloaded, then the signature must be
recalculated for each request. You should calculate the signature immediately before passing the
payment parameters to hostedParametersProvider. The following example shows how you might
do this, using a JQuery.getJSON call to your backend, and then hooking up a successful response with
the hostedParametersProvider done function. The done function ends the Amazon button creation
steps.

The following example shows making a getJSON call to the backend and hooking in the
hostedParametersProvider done function for the Pay with Amazon button.

<div id="AmazonPayButton"/>
<script type="text/javascript">
 OffAmazonPayments.Button("AmazonPayButton", "SELLERID_HERE", {
 type: "hostedPayment",

 hostedParametersProvider: function(done){
 args = {
 amount: $("paymentAmount").val(),
 currencyCode: $("amountCurrencyCode").val()
 sellerNote: $("noteToBuyer").val()
 }
 // Call the back end to combine button args with
 // other seller config param values and sign it.
 $.getJSON("/generateRequestSignature",
 args,
 function(data) {
 done (data.params)
 })
 },
 onError: function(errorCode) {
 // your error handling code
 }
 });
</script>

The parameters in the sample above are described in the topic Step 3. Specify the parameter values.
Security warning: Do not expose your Amazon Marketplace Web Service (Amazon MWS) secret key in
your web page’s JavaScript or HTML code. Because your Amazon MWS secret key is used for
authentication, it should be kept private in your backend.

27 April 2015 12

Step 3. Specify the Parameter Values

After the Pay with Amazon button has been selected you must direct the buyer to the checkout page
hosted by Amazon Payments. The URL should contain all data necessary to complete the flow and must
be signed with your Amazon MWS secret key to ensure tampered data can be detected and handled
appropriately.

Parameter

(Equivalent HTML interface
Parameter)

Required Need to
sign

Description

sellerId

(data-ap-seller-id)

Yes Yes This is your unique Seller ID. This is the same as
your Merchant ID that is displayed in Seller
Central. You can view your Merchant ID by
going to Settings, then Integration Settings.

Example: ADEMO3053M41F7EXAMPLE

amount

(data-ap-amount)

Yes Yes The amount of the payment.

Example: 25.50

returnURL

(data-ap-return-url)

Yes Yes The URL you want Amazon Payments to return
responses to. This must include the scheme
name (either HTTP or HTTPS).

Example:
https://www.merchant.com/merchantRe
sponseHandler

accessKey

(data-ap-access-key)

Yes Yes Your Amazon MWS public access key.

Example: ADEMOBRU3PYWWEXAMPLE

Signature

(data-ap-signature)

Yes No The signature used to sign your request. The
signature ensures that the button parameters
have not been tampered with. For more
information about how to generate the
signature, see Step 4. Generate a signature for
the payment request.

27 April 2015 13

lwaClientId

(data-ap-lwa-client-id)

Yes Yes The Login with Amazon Client ID of your
application.

Example:
amzn1.application-oa2-
client.demoa234d9024af28f4f6f8078ex
ample

currencyCode

(data-ap-currency-code)

No Yes * The currency to use to charge the buyer.

Default: current seller region
Example: USD

sellerNote

(data-ap-note)

No Yes * The message that will appear in the checkout
pages.

Max length: 1024 characters

sellerOrderId

(data-ap-seller-order-
id)

No Yes * The seller-specified identifier of this order. This
is displayed in buyer emails and in the
transaction history on the Amazon Payments
website.

We recommend that you use the following
characters only: lowercase a-z, uppercase A-Z,
numbers 0-9, dash (-), or underscore (_).

Max length: 50 characters

shippingAddressRequired

(data-ap-shipping-
address-required)

No Yes * A flag indicating whether the buyer should
select shipping address.

Default: true
Valid values: true | false

paymentAction

(data-ap-payment-
action)

No Yes * Specifies what happens when someone clicks
Pay Now at the end of the checkout flow.

Acceptable values: None | Authorize |
AuthorizeAndCapture

 None: results in Set and Confirm
actions only. (You need to initiate
authorize and capture actions
separately using API requests.)

 Authorize: reserves a specified
amount against the payment
method(s) stored in the order

27 April 2015 14

reference.
 AuthorizeAndCapture: reserves a

specified amount against the payment
method(s) stored in the order
reference and transfers funds from an
authorized payment instrument.

Default: None

*These parameters are required when signing only if you designated a value other than the default.

The following parameters are available in the HTML interface only. These parameters do not require
signing.

HTML parameter Required Need to
sign

Description

data-ap-widget-type Yes No The type of widget to include on the page.

Valid value: expressPaymentButton

27 April 2015 15

Step 4. Generate a Signature for the Payment Request

If you’re using the Pay with Amazon API, you must include a signature in the request parameters so that
Amazon can authenticate your payment requests. If you don’t include a signature, or if the signature is
incorrect, the buyer will be directed to an error page that will redirect to your specified returnURL for
failure handling.

To generate the signature, complete the following tasks:

1. Construct the string to sign.
2. Sign the string with your Amazon MWS secret access key.
3. Add the signature to the Pay with Amazon button parameters.

To create a valid signature, you need to construct the string to sign according to the Amazon MWS V2
signature spec. The string consists of the following elements, with each section separated by a new line:

 The HTTP action. For a Pay with Amazon request it is always POST.
 The request domain. For a Pay with Amazon request it is always a forward slash (/).
 Sorted parameters in query string format, with the URL encoded parameter name and value.

Note: You should include only the parameters that must be signed when generating a signature.

The required parameters are:

 sellerId
 amount
 returnURL
 accessKey
 lwaClientId

You should include these parameters when generating a signature only if you designated a value other
than the default:

 currencyCode
 sellerNote
 sellerOrderId
 shippingAddressRequired
 paymentAction

http://docs.developer.amazonservices.com/en_US/dev_guide/DG_ClientLibraries.html
http://docs.developer.amazonservices.com/en_US/dev_guide/DG_ClientLibraries.html

27 April 2015 16

The following example shows what your string to sign might look like. Replace the value of each field
according to the parameter values you want to use. (Note that the example includes line breaks so that
it is easier to read; a real response would be returned as a single, continuous string.)

POST
payments.amazon.com
/
accessKey=ACCESSKEY&amount=1.01
¤cyCode=USD
&lwaClientId=LWACLIENTID
&paymentAction=None
&returnURL=https%3A%2F%2FreturnURL
&sellerId=SELLERID
&sellerNote=SELLERNOTE
&sellerOrderId=SELLERORDERID
&shippingAddressRequired=true

Security recommendation: You should use HTTPS when generating the signature. This will help prevent
third parties from eavesdropping sensitive payment information.

27 April 2015 17

Step 5. Integrate Return URL Parameters

Whether the request was successful or failed, Login and Pay with Amazon returns an URL containing
parameters you can integrate into your order management system. For example, if the request was
successful, at the conclusion of the checkout flow, the buyer will be redirected back to the URL you
specified in the button request along with parameters describing the successful transaction.

Similarly, if a buyer abandons the checkout process by clicking Cancel on one of the checkout pages,
they will be redirected to your website where return URL parameters can provide the reason for
abandonment. This topic describes Login and Pay with Amazon return URL parameters.

Important: Before fulfilling orders on a successful response, you should verify the signature, amount,
sellerOrderId, and currencyCode parameters to ensure that the response was sent by Login and
Pay with Amazon and that it has been properly processed. Alternatively, you can make backend calls via
the Amazon MWS Off-Amazon Payments API using the OrderReferenceId.

Note: Integrating return URL parameters is one way to monitor the status of transactions on your web
page, but we recommend you also use Instant Payment Notification (IPN) to monitor transactions. IPN is
a HTML POST notification that is sent when a transaction either completes successfully or fails. You can
specify the default URL to handle IPN in your Amazon Payments account settings. For more information
on IPN, go to Synchronizing your systems with Amazon Payments: Monitoring payment object state
transitions in the Login and Pay with Amazon Integration Guide. To view transactions in Seller Central,
sign in and go to Orders, and then select Manage Transactions.

Common parameters

Parameter Required Description

resultCode Yes The response indicating whether checkout was successful.

Valid values: Success | Failure

sellerId Yes The Seller ID used for the request. If you are a solution provider would use this
to identify the merchant you made the call for.

http://docs.developer.amazonservices.com/en_US/apa_guide/APAGuide_Synchronizing.html
http://docs.developer.amazonservices.com/en_US/apa_guide/APAGuide_Synchronizing.html
https://sellercentral.amazon.com/

27 April 2015 18

Success parameters

Parameter Required Description

orderReferenceId Yes The ID of the order reference. The order reference is the contract that
encapsulates the payment agreement between you and the buyer.

amount Yes The amount that the buyer has agreed to pay.

currencyCode Yes The currency to charge the buyer in.

paymentAction Yes The specified request parameter.

Valid values: None |Authorize | AuthorizeAndCapture

sellerOrderId No The seller-specified ID for this order. This is returned only if it is
provided as a button parameter.

accessKey Yes The Amazon MWS private key’s corresponding public key used to
create the response signature.

signature Yes A signature used to ensure that the Amazon Payment response
parameters have not been tampered with. If you detect a signature
mismatch then ignore the response. For information about how to
calculate the signature, see Step 4. Generate a signature for the
payment request.

Failure parameters

Parameter Required Description

failureCode Yes The code describing the error.

Examples:

 BuyerAbandoned
 AmazonRejected
 RequestSignatureFailure
 InvalidParameterValue
 MissingParameter
 InvalidSellerAccountStatus
 TemporarySystemIssue

27 April 2015 19

The following example shows what the response might look like if the transaction is successful. (Note
that the example includes line breaks so that it is easier to read; a real response would be returned as a
single, continuous string.)

 http://www.courtandcherry.com/AmazonResponseHandler
 ?resultCode=Success
 &orderReferenceId=S01-0912345-1234567
 &sellerId=ADEMO3053M41F7TEXAMPLE
 &accessKey=ARIWE420982EXAMPLE
 &amount=10
 ¤cyCode=USD
 &paymentAction=None
 &sellerOrderId=A481WEIFEXAMPLE
 &signature=n345ngiwasdfasdJimCJixkEuxqN0021sdf56bDdZ4EXAMPLE

The following example shows what a response might look like if the buyer cancels the transaction.

 http://www.courtandcherry.com/AmazonResponseHandler
 ?resultCode=Failure
 &sellerId=ADEMO3053M41F7EXAMPLE
 &failureCode=BuyerAbandoned

http://www.courtandcherry.com/AmazonResponseHandler
http://www.courtandcherry.com/AmazonResponseHandler

27 April 2015 20

Step 6. Validate the Signature (optional)

After an order is placed, you should validate the signature in the return URL to ensure that it came from
Amazon.

To validate the returned signature, complete the following tasks:

1. Construct the string to sign.
2. Sign the string with your Amazon MWS secret access key.
3. Generate the signature on your server and compare with the returned signature.

To create a valid signature, you need to construct the string to sign according to the Amazon MWS V2
signature spec. The string consists of the following elements, with each section separated by a new line:

 The HTTP action. For generating the signature on your server the request is always GET.
 The domain name of the request URL for your server's return URL file.
 The request domain which is the qualified pathway to your server's return URL file.
 Sorted parameters in query string format, with the URL encoded parameter name and value.

Include only the parameters that were in the return URL from Amazon.

The following example shows what your string to sign might look like. Note that if your server's return
URL is http://your-domain.com/path/success-file.html the domain URL and request domain would be as
shown in the following example.

GET
your-domain.com
/path/validatesignature.html
AWSAccessKeyId=AKIAEXAMPLE&SignatureMethod=HmacSHA256&SignatureVersion=
2&amount=99.00¤cyCode=USD&orderReferenceId=S01-999999-
9999999&paymentAction=AuthorizeAndCapture&resultCode=Success&sellerId=A
2MQTZXEXAMPLE&sellerOrderId=1234

http://docs.developer.amazonservices.com/en_US/dev_guide/DG_ClientLibraries.html
http://docs.developer.amazonservices.com/en_US/dev_guide/DG_ClientLibraries.html
http://your-domain.com/path/success-file.html

27 April 2015 21

Step 7. Retrieve the Shipping Address

If your business ships physical goods you can retrieve the buyer's shipping address using the Manage
Transactions tool, under Orders, in Seller Central.

You may also retrieve the shipping address by calling the GetOrderReferenceDetails operation.
Express Integration handles details such as SetOrderReferenceDetails and
ConfirmOrderReferenceDetails automatically so you can call GetOrderRefernceDetails
directly using the orderReferenceId appended to the return URL you have specified.

The GetOrderReferenceDetails operation can be easily tested using the Amazon MWS Scratchpad
tool. Open Amazon MWS Scratchpad and make the following selections under the API Selection:

 API Section: select Off-Amazon Payments.
 Operation: from under OffAmazonPayments-Sandbox select GetOrderReference Details.

Enter your credentials the Authentication parameters and Submit the request.

The following example shows a Scratchpad request:

POST /OffAmazonPayments/2013-01-01 HTTP/1.1
Content-Type: x-www-form-urlencoded
Host: mws.amazonservices.com
User-Agent: <Your User Agent Header>

AWSAccessKeyId=AKIAJKYFSJU7PEXAMPLE
&Action=GetOrderReferenceDetails
&AddressConsentToken=IQEBLzAtAhUAjagYW4Jrgw84pCaaIDjrKoEhZXsEXAMPLE
&AmazonOrderReferenceId=P01-1234-56EXAMPLE
&MWSAuthToken=amzn.mws.4ea38b7b-f563-7709-4bae-87aeaEXAMPLE
&SellerId=YOUR_SELLER_ID_HERE
&SignatureMethod=HmacSHA256
&SignatureVersion=2
&Timestamp=2012-11-05T19%3A01%3A11Z
&Version=2013-01-01
&Signature=CLZOdtJGjAo81IxaLoE7af6HqK0EXAMPLE

For more information see GetOrderReferenceDetails in the Off-Amazon Payments API Reference Guide.

https://mws.amazonservices.com/scratchpad/index.html
http://docs.developer.amazonservices.com/en_US/off_amazon_payments/OffAmazonPayments_GetOrderReferenceDetails.html
http://docs.developer.amazonservices.com/en_US/off_amazon_payments/OffAmazonPayments_Overview.html

27 April 2015 22

The following example shows a Scratchpad response to a GetOrderReferenceDetails operation call.

<GetOrderReferenceDetailsResponse
 xmlns="http://mws.amazonservices.com/schema/OffAmazonPayments/2013-01-01">
 <GetOrderReferenceDetailsResult>
 <OrderReferenceDetails>
 <AmazonOrderReferenceId>S01-8474066-EXAMPLE</AmazonOrderReferenceId>
 <ExpirationTimestamp>2015-08-31T17:27:35.053Z</ExpirationTimestamp>
 <SellerNote>Thank you for your order.</SellerNote>
 <OrderTotal>
 <Amount>15.00</Amount>
 <CurrencyCode>USD</CurrencyCode>
 </OrderTotal>
 <IdList>
 <member>S01-8474066-2115738-EXAMPLE</member>
 </IdList>
 <OrderReferenceStatus>
 <LastUpdateTimestamp>
 2015-03-04T17:27:43.851Z
 </LastUpdateTimestamp>
 <State>Open</State>
 </OrderReferenceStatus>
 <Destination>
 <DestinationType>Physical</DestinationType>
 <PhysicalDestination>
 <Phone>800-000-0000</Phone>
 <PostalCode>60602</PostalCode>
 <Name>Susie Smith</Name>
 <CountryCode>US</CountryCode>
 <StateOrRegion>IL</StateOrRegion>
 <AddressLine2>Suite 2500</AddressLine2>
 <AddressLine1>10 Ditka Ave</AddressLine1>
 <City>Chicago</City>
 </PhysicalDestination>
 </Destination>
 <ReleaseEnvironment>Sandbox</ReleaseEnvironment>
 <Buyer>
 <Email>address@domain.com</Email>
 <Name>Sandbox_tester</Name>
 </Buyer>
 <SellerOrderAttributes>
 <StoreName>Sandbox_test_app</StoreName>
 </SellerOrderAttributes>
 <CreationTimestamp>2015-03-04T17:27:35.053Z</CreationTimestamp>
 </OrderReferenceDetails>
 </GetOrderReferenceDetailsResult>
 <ResponseMetadata>
 <RequestId>181efc0d-a90b-429f-837e-1209bfe4da0e</RequestId>
 </ResponseMetadata>
</GetOrderReferenceDetailsResponse>

27 April 2015 23

Step 8. Test Your Integration in the Sandbox Environment Then Switch
to Production

To test your integration and to ensure you have covered all possible edge cases, Amazon Payments
provides a Sandbox environment for testing. When you test your implementation in Sandbox mode, you
can simulate the buyers’ experience as they navigate through the Pay with Amazon button on your
website.

In Sandbox mode, you can also test your API operation calls to Amazon Payments to ensure that the
calls are configured correctly and that the responses include all the payment parameters that you need
to track the entire order. The Sandbox environment also lets you simulate various error conditions to
help you better manage your buyers’ experiences in the event that something goes wrong during the
checkout process. For example, you can simulate a payment decline or a browser cookie timeout. For
information about using the Login and Pay with Amazon Payments Sandbox environment, go to Testing
your integration with the Sandbox environment.

After you have thoroughly tested your integration, you can replace the sandbox endpoints in the
JavaScript snippet with the production endpoints and push your integration to your production site.
(The production endpoint is shown in the example in Add the JavaScript snippet that renders the
button.)

Appendix A - Set up an Amazon Payments Sandbox Test
Account

You need to setup a test account in the Amazon Payments Sandbox so that you can test you integration.

1. Logon to Seller Central at https://sellercentral.amazon.com, if you haven't already done so.
2. Select Amazon Payments Advanced (Sandbox) from the Marketplace Switcher dropdown box

found in the center of the menu bar.

The Marketplace Switcher appears as a dropdown box in the center of the menu located at the
top of the screen:

If your screen is minimized the Marketplace Switcher dropdown box is replaced with this icon:

3. Click Test Accounts under the Integration Tab.
4. Follow the on screen instructions:

http://docs.developer.amazonservices.com/en_US/apa_guide/APAGuide_Testing.html
http://docs.developer.amazonservices.com/en_US/apa_guide/APAGuide_Testing.html
https://sellercentral.amazon.com/

27 April 2015 24

 Login Settings - This login is for testing in the Sandbox. It requires a different email address
and password than what you use for your production account.
Email Address - You can use your production email but add "+sandbox" before the "@" sign.
For example, if your email address is JayDoe@outlook.com your sandbox email would be
JayDoe+sandbox@outlook.com.
Password - This is a different password than your production password, such as
"testSandbox".

 Payments - The credit card numbers under the Payments Methods are preset fictitious
charge cards.

 Shipping Addresses - select, or add, a shipping address.

5. Click Create account to save your settings.
Your test account is created.

mailto:JayDoe@outlook.com
mailto:JayDoe+sandbox@outlook.com

	Introduction
	Getting Started
	Register with Amazon Payments
	Button Generator Integration
	Step 1. Use the Button Generator to Create Pay with Amazon Sandbox Buttons
	Step 2. Test Your Pay with Amazon Buttons in Sandbox Mode
	Step 3. Use the Button Generator to Create Pay with Amazon Production Buttons
	Step 4. Test your Pay with Amazon Buttons in Production Mode

	Custom Integration
	Step 1. Add the Pay with Amazon JavaScript Reference
	Step 2. Build and Create a Pay with Amazon Button
	Step 3. Specify the Parameter Values
	Step 4. Generate a Signature for the Payment Request
	Step 5. Integrate Return URL Parameters
	Step 6. Validate the Signature (optional)
	Step 7. Retrieve the Shipping Address
	Step 8. Test Your Integration in the Sandbox Environment Then Switch to Production

	Appendix A - Set up an Amazon Payments Sandbox Test Account

