

Manual of 2-phase hybrid stepper motor driver DM542A

Introduction:

DM542A is a type of two-phase hybrid stepping motor driver, The drive voltage of which is from 18VDC to 50VDC. It is designed for use with 2-phase hybrid stepper motor of all kinds with 42mm to 86mm outside diameter and less than 4.0A phase current. This circuit that it adopts is smiliar to the circuit of servo control which enables the motor run smoothly almost without noise and vibration. Hording torque when DM542A run under high speed is also significantly higher than the other two-phase driver, whats more, the positioning accuracy is also higher. It is widely used in middle and big size numerical control devices such as curving machine, CNC machine, computer embroider machine, packing machines and so on.

Features:

- High performance, low price
- Average current control, 2-phase sinusoidal output current drive
- Supply voltage from 18VDC to 50VDC
- Opto-isolated signal I/O
- Overvoltage, under voltage, overcorrect, phase short circuit protection
- 15 channels subdivision and automatic idle-current reduction
- 8 channels output phase current setting
- Offline command input terminal
- Motor torque is related with speed, but not related with step/revolution
- High start speed
- High hording torque under high speed

Electrical specification:

Input voltage	18-50VDC
Input current	< 4A
Output current	1.0A~4.2A
Consumption	Consumption: 80W; Internal Insurance: 6A
Temperature	Working Temperature -10~45°C; Stocking temperature -40°C~70°C
Humidity	Not condensation, no water droplets
gas	Prohibition of combustible gases and conductive dust
weight	200G

- 1. Pins assignments and description:
- 1) Connector Pins Configurations

Pin Function	Details	

PUL +,PUL-	Pulse signal, PUL+ is the positive end of pulses input pin PUL- is the negative end of pulse input pin
DIR+,DIR-	DIR signal: DIR+ is the positive end of direction input pin DIR- is the negative end of direction input pin
ENBL+	Enable signal: ENBL+ is the positive end of direction input pin. This signal is used for enabling/disabling the driver. High level for enabling the driver and low level for disabling the driver.
ENBL-	ENBL- is the negative end of direction input pin. Usually left unconnected (enabled)

2) Pins wiring diagram:

PC's control signals can be active in high and low electrical level. When the high electrical level is active, all control negative signals will be connected together to GND. When low electrical level is active, all control positive signals will be connected together to public port. Now give two examples (Open collector &PNP), please check them:

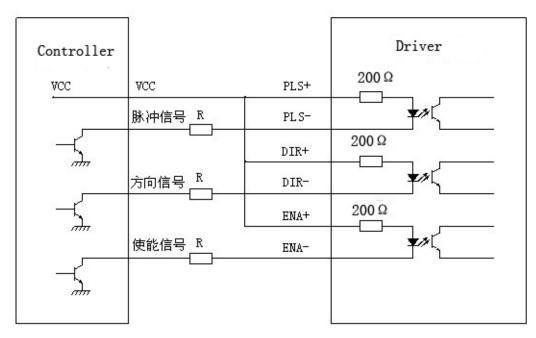


Fig 1. Input port circuit (Yang connection)

PC open connector output

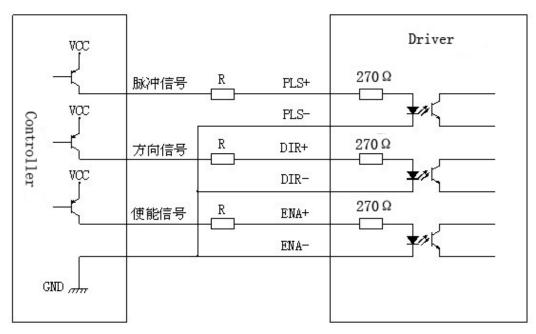


Fig. 2 Input port circuit (Yin connection)

PC PNP output

Note: When VCC=5V, R=0

When VCC=12V, R=1K, >1/8W

When VCC=24V, R=2K,>1/8W

R must connect in the control signal part .

3. Function choice (Using DIP pins to achieve this function)

1) Micro step resolution is set by SW 5,6,7,8 of the DIP switch as shown in the following table:

SW5	OFF	ON	0FF	ON	0FF	ON	0FF	ON	0FF	ON	0FF	ON	0FF	ON	OFF
SW6	ON	OFF	OFF	ON	ON	OFF	OFF	ON	ON	OFF	OFF	ON	ON	OFF	0FF
SW7	ON	ON	ON	OFF	OFF	OFF	OFF	ON	ON	ON	ON	OFF	OFF	OFF	OFF
SW8	ON	ON	ON	ON	ON	ON	ON	0FF	0FF	0FF	0FF	0FF	0FF	0FF	OFF
PULSE/R EV	400	800	160 0	320 0	640 0	128 00	256 00	100 0	200 0	400 0	500 0	800 0	100 00	200 00	250 00

2) Standstill current setting

SW4 is used for this purpose. OFF meaning that the standstill current is set to be half of the selected dynamic current and ON meaning that standstill is set to be the same as the selected dynamic current.

3) Output current setting:

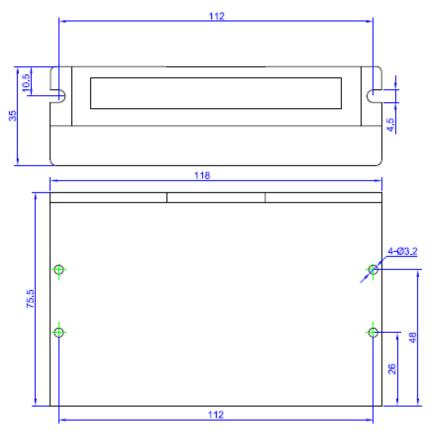
The first three bits (SW 1, 2, 3)of the DIP switch are used to set the dynamic current. Select a setting

Closest to your motor's required current

Output current (A)							
SW1	SW2	SW3	PEAK	RMS			
ON	ON	ON	1.00	0.71			
0FF	ON	ON	1.46	1. 04			
ON	0FF	ON	1.91	1. 36			
0FF	OFF	ON	2. 37	1. 69			
ON	ON	0FF	2.84	2. 03			
0FF	ON	OFF	3. 31	2. 36			
ON	OFF	OFF	3. 76	2. 69			
0FF	OFF	OFF	4. 20	3. 00			

4) Semi-flow function:

Semi-flow function is that there is not step pulse after 500 ms, the driver output current automatically reduced to 70% of rated output current, which is used to prevent motor heat.


4. Pins of motor & power:

	1	A+		
Motor	2	A-	Motors wiring	
and power	and 3 B+			
pins			-	
	5,6	DC+ DC-	Power supply	Power supply : DC18-50VDC

5. Mechanical Specification:

To have 20mm of space around, cannot be placed next to other heating devices. Whats more, avoid dust, oil mist, corrosive gas, heavy humidity and high vibration.

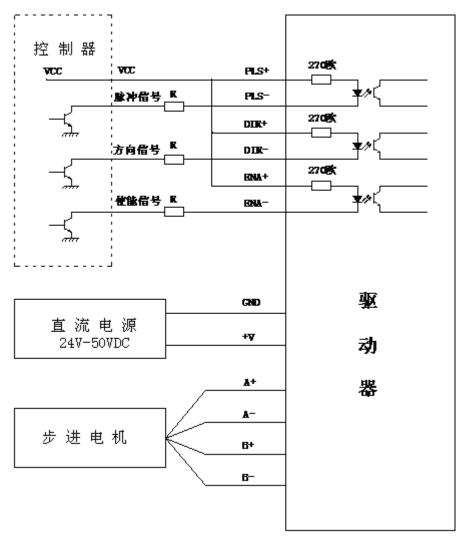
pic 3

6. Adjustment of troubleshooting

1) , the status on light's indication PWR: green, normal work light.
ALM: red, failure light, the motor with phase short-circuit, overvoltage and under-voltage protection.

2) Troubles

Alarm indicator	Reasons	Measures			
LED off turn	Wrong connection for power	Check wiring of power			
	Low-voltages for power	Enlarge voltage of power			
Motor doesn't run, without	Wrong connection of stepper motor	Correct its wiring			
holding torque	RESET signal is effective when offline	Make RESET ineffective			
Motor doesn't run, but maintains holding torque	Without input pulse signal	Adjust PMW & signal level			
Motor runs wrong direction	Wrong wires' connection	Change connection for any of 2 wires			
	Wrong input direction signal	Change direction setting			



	Too small relative to current setting	Correct rated current setting				
Motor's holding torque is	Acceleration is too fast	Reduce the acceleration				
too small	Motor stalls	Rule out mechanical failure				
	Driver does not match with the motor	Change a suitable driver				

7. Driver wiring

A complete stepper motor control system should contain stepper drives, DC power supply and controller (pulse source). The following is a typical system wiring diagram

