Recombinant Human Cripto-1
Catalog Number: 145-CR

DESCRIPTION

Source: Spodoptera frugiperda, Sf 21 (baculovirus)-derived
Leu31-Thr172 & Ser63-Thr172
Accession # NP_003203

N-terminal Sequence Analysis
Leu31 & Ser63

Predicted Molecular Mass
16 kDa & 13 kDa

SPECIFICATIONS

SDS-PAGE
16-20 kDa, reducing conditions

Activity
Measured by its binding ability in a functional ELISA.
Immobilized Recombinant Human Activin RIB/ALK-4 Fc Chimera (Catalog # 808-AR) at 2 µg/mL (100 µL/well) can bind Recombinant Human Cripto-1 with a linear range of 0.8-100 ng/mL.

Endotoxin Level
<0.10 EU per 1 µg of the protein by the LAL method.

Purity
>95%, by SDS-PAGE under reducing conditions and visualized by silver stain.

Formulation
Lyophilized from a 0.2 µm filtered solution in PBS with BSA as a carrier protein. See Certificate of Analysis for details.

PREPARATION AND STORAGE

Reconstitution
Reconstitute at 10 µg/mL in sterile PBS containing at least 0.1% human or bovine serum albumin.

Shipping
The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage
Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
- 12 months from date of receipt, -20 to -70 °C as supplied.
- 1 month, 2 to 8 °C under sterile conditions after reconstitution.
- 3 months, -20 to -70 °C under sterile conditions after reconstitution.

BACKGROUND

Cripto is the founding member of the epidermal growth factor-CriptoFRL1Cryptic (EGF-CFC) family of signaling proteins that function in cancer and various developmental processes. These developmental processes include: formation of the germ layers and dorsal organizer, specification of anterior-posterior and left-right axes, and differentiation of heart muscle (1, 2). Other members of the EGF-CFC family include Cryptic, Xenopus FRL-1 and zebrafish OEP (one-eyed pinhead).

Overall sequence identity between members of the family is low, but they do share several common domains: a variant EGF-like motif, a novel conserved cysteine-rich domain (called CFC domain), and a C-terminal hydrophobic region. Most EGF-CFC members have a glycosyl-phosphatidylinositol (GPI) anchoring site at the C-terminus and exist as extracellular membrane-anchored proteins. However, naturally-occurring soluble isoforms also exist. Human Cripto shares 66% and 28% amino acid identity with mouse Cripto and zebrafish OEP, respectively (2).

Despite weak conservation in amino acid identity, EGF-CFC family members appear to function similarly in assays for phenotypic rescue of zebrafish oep mutants (2). Both secreted and membrane bound forms of Cripto demonstrate biological activity (3).

Cripto, also known as CFC-2 or TDGF-1 (teratocarcinoma-derived growth factor), was originally isolated from an undifferentiated human teratocarcinoma cell line as a potential oncogene. It is overexpressed in many types of cancers and acts as a growth factor for tumors (4). Genetic evidence from mice and zebrafish points to a role for Cripto as an essential cofactor in Nodal signaling. Cripto and OEP mutants display defects in mesoderm induction and heart morphogenesis, similar to phenotypes seen in Nodal mutants (2).

Cripto acts as a cofactor for Nodal by recruiting the Activin type I Receptor, ALK-4, leading to an Act RIIb-ALK4-Cripto-Nodal complex for signaling (1, 3). Cripto also forms a complex with activin and Act RIIa to block activin signaling (5).

Studies have shown that other TGF-β superfamily members such as Vg1 and GDF-1 also require EGF-CFC cofactors (6). Cripto can also activate mitogen-activated protein kinase (MAPK) and Akt pathways independently of Nodal by directly binding to a membrane-associated heparan sulfate proteoglycan, glypican-1 (7).

REFERENCES: